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Preface

This semi-annual report describes our progress during the period from February
1990 to September 1990. Several technical reports and papers have been written and these
are listed at the end of each task.

There are two tasks described in this report. Each should be read independently.
That is, figure and reference numbering is consecutive only within the description of the
task. As can be expected, the progress reports are very brief and the reader should refer to
the referenced technical reports for detailed coverage. A total of sixteen technical reports
have already been submitted and two more are currently being prepared. Also, more than
18 publications to refereed journals and more than 17 conference papers have resulted from

this sponsored research.
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ABSTRACT

An extension of the two-dimensional formulation developed last year is presented
for a three dimensional body of revolution. With the introduction of a Fourier expansion of
the vector electric and magnetic fields, a coupled two-dimenional system is generated and
solved via the finite-element method. As before, an exact boundary condition is employed
to terminate the mesh and the FFT is used to evaluate the boundary integrals for low O(n)
memory demand when an iterative solution algorithm is used. Again, by virtue of the finite
element method the algorithm is applicable to structures of arbitrary material composition.

Several improvements to our two-dimensional algorithm are also described. These
include (1) modifications for terminating the - sh at circular boundaries without distorting
the convolutionality of the boundary :r.cgr+.s, (2) the development of our own non-
proprietery mesh generation routines for two-dimensional applications, (3) the development
of preprocessors for interfacing SDRC IDEAS@ with the main algorithm, and (4) the
development of post-processing algorithms based on the public domain package GRAFIC
to generate 2D and 3D gray level and color field maps.

OBJECTIVE

The objective of this task is to develop innovative techniques and related software
for scattering by three dimensional composite structures. The proposed analysis is a hybrid
finite element-boundary integral method formulated to have an O(n) memory demand. This
low storage is achieved by employing the FFT to evaluate all boundary integrals and
resorting to an iterative solution algorithm. Particular emphasis in this task is the
generation of software applicable to airborne vehicles and the validation of these by
comparison with measured and other reference data. Because the approach is new, a step
by step development procedure has been proposed over a three-year period. During the
first year the technique was developed and implemented for two-dimensional composite
structures. Support software for the two-dimenional analysis such as pre- and post-
processor routines were developed during the second year and a formulation was also
developed and implemented for three-dimensional bodies of revolution. Finally, during the
third year, we will develop, implement, and test the method for arbitrary three dimensional

structures.



BACKGROUND

Interest in three-dimensional (3-D) methods has increased in recent years, however,
the associated demands in computation time and storage are often prohibitive for electrically
large 3-D bodies. Vector and concurrent (i.e. hypercube, connection, etc.) computers are
beginning to alleviate the first of these demands, but a minimization of the storage
requirements is essential for treating large structures.

The traditional Conjugate Gradient Fast Fourier Transform (CGFFT) method [1]-
[4] is one such frequency domain solution approach which requires O(n) storage for the
solution of n equations. This method involves the use of FFTs whose dimension equals
that of the structure under consideration [5]-[7] and, therefore, demands excessive
computation time when used in an iterative algorithm. Also, the standard CGFFT requires
uniform rectangular gridding that unnecessarily includes the impenetrable portions of the
scatterer. With these issues in mind, a new solution approach is propsed for solving
scattering problems. The proposed method will be referred to as the Finite Element-
Conjugate Gradient Fast Fourier Transform (FE-CGFFT) method.

During last year's effort the FE-CGFFT method was developed for iwo-
dimensional scatterers where the finite element mesh was terminated at a rectangular box.
Inside the box boundaries, Helmholtz equation is solved via the finite element method and
the boundary constraint is obtained by an appropriate integral equation which implicitly
satisfies the radiation condition. Along the parallel sides of the box, this integral becomes a
convolution and is, therefore, amenable to evaluation via the FFT. The dimension of the
required FFT in this hybrid method is one less than the dimensionality of the structure thus,
making it attractive for 3-D simulations. Also, because it incorporates the finite element
method, the FE-CGFFT formulation remains valid regardless of the structure's geometry
and material composition.

The proposed method described in the University of Michigan Report 025921-6-T
(see also [8]) is similar to the moment method version developed by Jin [9]. Jin's method
was in turn based on work published in the early 70's by McDonald and Wexler [10] who
introduced an approach to solve unbounded field problems. The proposed method is also
similar to other methods (a few of which will be mentioned here), neither of which
provides a storage reduction comparable to the proposed FE-CGFFT method. The
unimoment method [11] uses finite elements inside a fictitious circular boundary and an
eigenfunction expansion to represent the field in the external region. The coefficients of the
expansion are then determined by enforcing field continuity at the finite element (FE) mesh

boundary. The coupled finite element-boundary element method [12] uses the finite



element method within the boundary and the boundary element method to provide the
additional constraint at the termination of the mesh. Unlike the proposed method, the
solution in [12] was accomplished by direct matrix inversion (as in [9]), and the outer mesh
boundary is not rectangular to take advantage of the FFT for the evaluation of the boundary

integrals.

PROGRESS

The proposed FE-CGFFT formulation was implemented last year (see Figs. 1 and
2) but as can be expected, the rectangular mesh boundary does not always lead to the most
efficient formulation, particularly when dealing with structures whose outer boundary is
not rectangular. Because of this, during this year we developed and implemented a
formulation which permits mesh termination at circular (see Fig. 3) boundaries for the 2D
case with the corresponding boundary enclosure being a pillbox for the 3D case (see Fig.
4). As before, these boundaries lead to convolutional integrals and do not therefore destroy
the O(n) memory demand of the method. The FE-CGFFT formulation relating to circular
(and ogival) boundary enclosures is described in the University of Michigan report
025921-11-T (see also [13]) and results based on its implementation are shown in Figures
5 and 6. Fig. 5 shows bistatic scattering patterns for a coated circular cylinder with a
conductor radius of 3A, 0.05\ coating thickness and material properties € = 3-j5 and Y, =
1.5 - j0.5. The agreement with the series solution result is excellent. In Fig. 6 a
backscatter pattern is shown for a A/2 x 1A conducting ogive (see Fig. 3). In comparison
with the moment method results, the agreement is again excellent. Additional results are

given in Figure 7 for a missle-like shape scatterer.

Pre- and Post-Processing *lgorithms

The availability of pre- and post-processing algorithms is crucial for the generation
of the geometry and display of results in a graphical form. Generally, it is desirable that
these tasks be done with a graphical user interface (GUI) and possibly in an X-window
setting. Part of this year's effort was therefore devoted to the development of such
algorithms and/or interfaces for the more sophisticated commercial pre- and post-

processing packages.



For the most part, there exist commercial geometry, mesh generation and post-
processing packages which are highly interactive and graphical. Nevertheless, there is
always a need for a suitable interface or data interpretor between the commercial packages
and the solution algorithm described in the previous section. The specific package
interfaced with the computational algorithm was SDRC IDEAS@ and the selection of this
was based on its availability on the U-M Network, its versatility, graphical user interface,
and capability to generate meshes for 2D and 3D structures. Furthermore, a new version of
SDRC IDEAS@, to be released soon, will support X-windows. IDEAS was developed
for mechanical design purposes, but its geometry and finite element mesh generation
modules are particularly suited for our needs. The geometry is defined graphically using
the area (for 2D) or solids (for 3D) modeling capability provided by the module Geomod.
Alternatively, the user may choose to enter the geometry in terms of individual points,
surve segments (for 2D) or surfaces (for 3D). Once the geomeltry is entered, mesh areas or
regions are specified and either a mapped mesh or free mesh can be generated. Further,
individual nodes and/or elements may be inputted as desired using the CREATE command.
Once the mesh is generated, two files are created, one containing the nodes and their
corresponding coordinates, and another specifying the nodes of each element. These files
are then read by an interpretor which creates a new input file compatible with the format
required by the computational modules.

Examples of two-dimensional meshes generated with SDRC IDEAS@ were shown
in Figures 1, 2b and 7, and these are in a form suitable for the FE-CGFFT analysis. Some
three-dimensional meshes are also displayed in Figure 8 for an ogive and missile-like
structures. As seen, the 3D meshes are terminated at a cylindrical surface, tightly enclosing
the scatterer which is the intended enclosure for the proposed FE-CGFFT method. A brief
manual for geometry and mesh generation using SDRC IDEAS@ is currently being
prepared.

SDRC IDEAS@ is a rather sophisticated package and its use is certainly preferable
for 3D modeling and mesh generation. For 2D mesh generation, though, it is possible to
construct a non-proprietory package without much effort, and which is also simpler
without a serious sacrifice in versatility. Clearly, the primary reason for resorting to such
an algorithm is to permit mesh generation at sites not having a license for SDRC IDEAS@.
The specific geometry and mesh generation package developed for this purpose is based on
the algorithm described in [14]. Examples of free meshes generated by this package are
displayed in Figures 2a and 3. The package is interactive/menu driven and can be readily
used without much preparation. The mesh can be displayed in the Apollo screens or a

postscript file may be generated for display on other workstations. At present,



visualization cannot be done in an X-window but this capability is planned for early next
year.

A variety of post-processing capabilities have also been exmployed for a graphical
display of the output data. The output is either in the form of echowidth plots as a function
of observation and/or incidence angle or in the form of gray level field maps. Color instead
of gray level field maps can also be generated at those workstations which support this
feature. Generally, all echowidth plots are generated and displayed using standard
software, and each workstation provides its own selection. To generate and visualize the
gray level and color field maps we employed the public domain package GRAFIC. An
example of a gray level plot is shown in Figure 9. This is generated from a postscript file
and can thus be displayed on other sponsor machines.

3D Algorithm for Bodies of Revolution

Before extending the presented 2D formulation to scattering by arbitrary 3D
structures, it is instructive that we first consider its implementation for a restrictive class of
3D bodies. In particular, during this year an algorithm was developed for scattering by
inhomogeneous bodies of revolution. Because of the symmetry of this structure, it is only
necessary to discretize it in a single plane slicing the structure as shown in Figure 10. A
knowledge of the fields over this cross-section is then sufficient to generate the fields
everywhere by employing a Fourier expansion in the azimuthal direction. Clearly, the
discretization can be accomplished using a 2D mesh generation routine and this is the
primary reasons for considering this class of structures. Also, the storage requirements are
comparable to that of the 2D formulation although, as expected, the computational intensity
is much greater.

The mathematical details pertaining to the BOR formulation will be presented at
sufficient detail in an upcoming technical report. Briefly, the method consists of the

following steps

1) A Fourier expansion is used to expand the fields in terms of those over a single

cross-section of the BOR.

2) The fields in the finite-element region are then formulated via the Coupled
Azimuthal Potential (CAP) method as described in [15]. This results in a banded

finite-element matrix in terms of the boundary fields.



3) The boundary fields are formulated via the usual Stratton-Chu equations which are
then discretized via the boundary element method. As before, the boundary enclosure
is chosen to yield convolutional integrals computed via the FFT.

4) The finite-element and boundary-element systems are coupled via the boundary
fields and solved via the CGFFT method maintaining an O(n) storage requirement,
where n is the number of nodes over a single cross section of the BOR.

Presently, a code has been written based on the proposed formulation and is in the

final stages of the validation process.

CONCLUSIONS

-0 far, we have formulated and implemented the FE-CGFFT method for a variety
of 2D structures and we are now in the process of completing its implementation for BOR
structures. The method was proposed because of its versatility, accuracy and low memory
demand in comparison with other methodologies, and all of these attributes have been
demonstrated in the testing and validation process. It is therefore a promising method for

general 3D implementations to be considered in the following year.

TRANSITIONS

The validation of the 3D BOR formulation is expected to be completed by early Fall
1990. We will then begin the development and implementation of the formulation for
arbitrary 3D structures. This implementation is expected to be much more involved than
those considered earlier and the same if true for the geometry and mesh generation. It is
therefore, likely that the proposed 3D implementation may not be completed by the end of
the 3rd year. Also, because of the need to generate suitable pre-processing and post-
processing algorithms additional man-hours are required during the third year of this effort.
Most likely, a practical user-oriented validated and benchmarked code will not be available
until the fourth year. As part of this effort it would also be desirable to design and develop
a graphical user interface (GUI) compatible with the X-window platforms. The GUI is



particularly necessary for the 3D analysis package. Otherwise, the user would be faced
with a long list of subprograms whose interfacing would likely be cumbersome.

The proposed FE-CGFFT formulation employs an exact boundary condition at the
termination of the mec<h. This eliminates a need to extend the mesh far from the scatterer
leading to a substantial savings in storage requirements. However, this storage reduction
and solution accuracy is achieved at the expense of computational complexity and intensity.
In many cases, though, where accuracy is not of primary concern, one could resort to the
use of non-exact (i.e. absorbing boundary conditions), for terminating the mesh. This
leads to completely sparse matricies which can be solved r..ore efficicntly using special
purpose algorithms. In the future, it is therefore desirable to include this formulation as an
option to the user. Also, a new class of boundary conditions are currently being
investigated for terminating the mesh.
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COATED OGIVE
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Figure 2(b):

FILE: ogive_leo_out

CREATION DATE: 7 Aug 1990
STRUCTURE: 0.5 x 1 A coated conductor
ENCLOSURE: rectangle

1084
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number of nodes:
number of elements:
nodes on pec boundary:
nodes on obs boundary:

nodes on unknowns (E-pof): 944
nodes on unknowns (H-pol): 1084

Figure 2(c):
Fig. 2(b).
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Example of a rectangular mesh enclosing a coated ogive.
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Figure 7: Backscatter patterns for a missile-like perfectly conducting and

coated cylinder.
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Figure 10: Body of revolution surrounded with a rectangular mesh.
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ABSTRACT

The diffraction by a material discontinuity in a thick dielectric/ferrite layer
is considered by modelling the layer as a distributed current sheet obey-
ing generalized sheet transition conditions (GSTCs). The sheet currents
are then formulated and solved via the standard dual integral equation ap-
proach. This yields the diffracted field in terms of unknown constants which
underscore the non-uniqueness of the GSTC current sheet representation.
The constants are dependent on the geometry and properties of the discon-
tinuity and arc determined by enforcing field continuity across the material
junction. This requires the field internal to the slab which are determined
from the external ones via analytic continuity. Results are given which
validate the solution and demonstrate the importance of the constants.

OBJECTIVE

This task involves the use of higher order boundary conditions to generate
new solutions in diffraction theory. In particular, diffraction coeflicients will
be developed for dielectric/magnetic layers and metal-dielectric junctions
which are often encountered on airborne vehicles as terminations of coatings
and conformal antennas. Solutions for both polarizations will be developed
for fairly thick junctions and versatile computer codes will be written and
tested. Creeping wave diffraction coefficients will be also developed for
multilayered coated cylinders.

PROGRESS

1 Introduction

In scattering, layered materials are often modeled by equivalent sheets
satisfying simple boundary/transition conditions. In particular, impene-
trable layers are typically replaced by opaque sheets satisfying standard
impedance boundary conditions (SIBCs) [1], whereas penetrable layers are
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represented by transparent sheets obeying resistive or conductjve type tran-
sition conditions (STCs) [2]. These simple boundary/transition conditions
relate the normal fields to their first normal derivatives through proportion-
ality factors, “impedances” in the SIBC case and “resistivities/conductivities”
in the STC case. With this modeling scheme, a discontinuity in layered ma-
terial is represented by an equivalent sheet discontinuity, whose scattering
may be treated via function theoretic techniques such as the Wiener-Hopf
method. As is well known, however, these equivalent sheet representations
are valid only for very thin or loss v leyers and alternative simulations are
therefore required to model discontinuities in low loss layers and/or layers
of appreciable thickness.

One such approach is to employ generalized impedance boundary con-
ditions (GIBCs) [3] [4] or generalized sheet transition conditions (GSTCs)
[5] [6] in place of the usual SIBCs and STCs, The GIBCs and GSTCs are
respective generalizations of SIBCs and STCs and permit a more accurate
representation of the fields at the surface of the coating or layer. Unlike
the SIBCs or STCs, GIBCs and GSTCs include second and possibly higher
order derivatives of the field components on the equivalent sheet which are
responsible for the higher accuracy of the conditions. The highest deriva-
tive kept in the condition defines their order and generally the accuracy of
the conditions is analogous to the order. As can be expected, thicker and
multilayer coatings require higher order conditions for an accurate simu-
lation and to date a plethora of GIBCs and GSTCs have been derived to
model a variety of material coatings and layers (6] [7] [8] [9)] (10].

GIBC/GSTC sheets are well suited for characterizing the diffraction
by discontinuities in thick coatings or layers. In particular, they can be
employed in conjunction with the Wiener-Hopf method or dual integral
equation approach without much deviation from the procedure used in
connection with the SIBC or STC conditions. However, the resulting so-
lutions obtained in this manner are inherently non-unique [11] [12]. This
non-uniqueness cannot be removed with the usual application of the edge
condition or the enforcement of reciprocity, which has been used in the past
to generate a more physically appealing, if not a unique, solution.

Uniqueness is an obvious requirement of the physical problem and unless
resolved it would seriously undermine the usefulness of the conditions. In
the case at hand, the non-uniqueness is manifested in the form of unknown
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solution constants [12] and this simply points to the fact that additional
conditions are required for their specification.

In this paper we demonstrate that the GIBC/GSTC sheet characteriza-
tion can yield a complete solution when supplemented with certain condi-
tions at the sheet discontinuity which do not require apriori knowledge of
the edge fields. As a vehicle in presenting this solution procedure we employ
the dual integral equation method to consider the plane wave diffraction
by a discontinuous distributed sheet (see Figure 1(b)). This very general
model is capable of representing material half-planes, material junctions,
and material discontinuities on grounded structures, such as those shown
in Figure 2. In addition, a distributed sheet model typically renders the
same degree of accuracy as the usual infinitely-thin sheet, but with a lower
order condition. It is, therefore, of much practical interest.

In the first part of the paper, the GSTC representation of the distributed
sheet discontinuity is used to develop dual integral equations in terms of
the unknown spectral functions proportional to the sheet currents. These
equations are then solved in the standard manner to yield expressions for
the spectral functions in terms of unknown con- ants, and examples are
presented where a proper choice for the constants demonstrates that they
recover known solutions. This demonstrates the validity of the presented
solution, but in general, the determination of the constants requires the
enforcement of additional constraints demanding field continuity across the
junction. The development of these conditions and their use in solving for
the constants is also presented.

2 Dual Integral Equation Formulation

Consider a distributed sheet of thickness 7 illuminated by the plane wave

E, inc E, polarization,

' — Fk(z cos ¢o+ysinds) —

Fine = ¢ { Z,H, n., H, polarization, (1)
as shown in Figure 1(a). The excitation (1) induces reflected and trans-
mitted fields which are explicitly given by the properties of the distributed

sheet. If this sheet models a symmetric slab, then an appropriate GSTC
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representation is formally given by [10]

Ul (—%2—2) {F* - F~}+ %u;z (—i—f) {0y [F* + F|} =0,

—o<r< oo

4 (5 e () @l -0
—oo <z < o0. (2)

in which F is the total field, F* = F(z,y = *7/2), 0rF* = %F(m,y
= +7/2), and QyF* = aa—yF(l‘,y) ly=t-/2. Also, 4 (—&k—l;) are differential
operators which operate on the field quantity in the curly brackets, and are
finite polynomials in -—‘1—”22 whose coefficients depend on the slab modeled
by the distributed sheet. To maintain the generality of the solution, the U,
operators are left in symbolic form and the reader is referred to [10] for their
explicit representation in terms of the material constants and thickness of
the layers comprising the modeled slab. In general, the order of ¢}, (i.e.
the highest derivative present) is usually the same or one more than that

of U}, and similarly the order of Uy, is the same or one more than the order
of Uy,. Thus, we may define the orders of the GSTCs in (2) to be

Ny = maximum{ order of U}, (/\2) ;1 + order of U}, (/\2>}
(3)
N = maxirnum{ order of Uy, (/\2) 1+ order of U}, (/\2)}
The reflected and transmitted felds may now be easily determined by
employing (2) to find
Fyi = Rye*(zcostoysing,) (4)
Firan = Tye(zcosdotysing,) (5)

in which R, and T} are the reflection and transmission coeflicients, respec-
tively, and are given as

R, = eJand’ R + Rgtd] (6)
T, = ejkT;n% [R;:uen _ Rc;dd] ) (7)
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with

sin U], (cos?

even o) uzll (COS ¢o)

RV = 8
‘ S0 @Yy (cos? 6,) 1 Ul (cos? 6,) (8
Rodd  _ sin g}, (cos® ¢,) — U}, (cos? ¢,) 9)

! sin ¢ UL, (cos? &) + U}, (cos? qSO)

We remark that in (8) and (9), U}, (cos® ¢,) now represent simple polynomial
functions in cos® @,, since —9x?/k? = cos? ¢, in view of the ficld expressions
(4) and (3).

Consider now the case where the right half of the distributed sheet
in Figure 1(a) is replaced by another sheet of the same thickness, but of
different properties, as illustrated in Figure 1(b). The GSTC representation
of this modified sheet is

ul, (—%) {F*—F‘}+%Ufz (—i—lj) {oy|Fr+F]} = 0

(10)
U, (-%“j) {F*+F‘}+%L{2’2 (—%2-) {oy[Fr-F]} =0
for ~oo < z < 0 and
Uz, (-—> {F*-F- }+ u (—%) {oy[F*+F]} = o
(11)

s, (S5 ) {7 o du, (55 (ol -} = o

for 0 < & < oo, where the superscripts 1 and 2 distinguish the left- and
right-hand sheets, respectively. Referring to our previous discussion, the
orders of the right hand side GSTCs are given as

N = max {order of UZ, (/\2) in A\, 1 + order of U}, ()\2) in /\}
(12)
N;¥" = max {order of UZ, (/\2) in A, 1 + order of U7, (/\2) in /\}.
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The modified right hand side sheet induces a scattered field F§ in the
presence of the excitation (1), and the total field can be represented as

F:{Enc+Frefi+Fs y>T/2 (13)

Eran+Fs y<7’/2

where F), is the unknown scattered field in the region |y| > 7/2 and can be
expressed as [13] [14]

Fi(z,y) = /C'PZ{ Poyg(cosa) + Peyen (cos a)
e—jksina(|y|—r/2)e—jk.rcosada_ (14)

where C is a contour in the complex a plane, such that A\ = cos & runs from
—o0 to 0o as shown in Figure 3. In this, the spectral functions P,qq4 (cos a)
and P.,., (cos «) are directly related to the Fourier transforms of the un-
known equivalent currents

Jodd = F3+ — FS_ (15)
']even = F3+ + F_g_a (16)
via the relations
00 : dA
Tua(@) = 2 [ Pua() R et (17)

] —jkzA
even (1) = 2[ Peven (/\)e J —‘——m.

Substituting (1), (4), (5), (13) and (14) into the transition conditions (11)
and (12), and introducing the transformation A = cos a (see Figure 3) yields

(18)

dA

/ godd /\2 ad()‘)e —gkzA — = 0 (19)
even —]RZ dA ¥

[0 () Pan 72 g = 0 (20)
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for + < 0 and

/_ :)gudd( )Podd(/\)e_jk”\/ldii/\?

N 2sin d)oe]‘kz,\oejkr/%inéozodd (/\(2))

21
Gyt (A2) .
, dA
even —JkxA
L 265 (V) P (74—
_ 2sin éoejkr'\°61k7/251ndjOZeven (/\3) (22)

G (3]

for z > 0, where A, = cos ¢, and

- () () - () ()] o

Zewn (M) = [t (M) U2, (32) il O2) 1, ()] (28)

Equations (19) with (21) and (20) with (22) form two uncoupled sets
of integral equations, sufficient to yield a solution for the unknown spectra
P44 (}) and P,,., (\). Clearly, because of the similarity between the two
sets of equations, once a solution for P,y () is found, the corresponding
one for P, (A) follows by inspection.
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3 Solution of the Diffracted Field

Upon a solution of the dual integral equations (19) and (21) we obtain

P (/\) 3 L smd) 7_)\2 ejkr/?sincz&o
odd ~ or X+ A, add(/\) godd(A )godd godd (Xo)
i A Noa=1 Nogg—1-m . .
Zous () g5 + 578 Tam i agmonr| @)

where we have assumed that Jodd(:c) ~ 7%dd g5 7 — O with 0 < Spuq < 1. In
this, Noga = int {1/2(NL, + N2, 4+ 1)}, and a, are arbitrary constants
as yet undetermined, and correspond to the coefficients of the polynomial
resulting from the application of Liouville’s theorem. The chosen symmetric
form of this polynomial is not unique but will be found most useful later in
constructing a reciprocal form for Pogq(A). Also, Gi4()A) are Wiener-Hopf
split function regular in the upper (+) or lower (-) half of the A-plane and
satisfy the relation

1(AY) = G (NG1- () (30)

(see Appendix). Similarly, G;4+(\) are the corresponding split functions
assoclated with G'z A?). Finally, E,44()) is some entire function behaving

no worse than [/\1 Noaa+Noaa) /2S04t and can take any of the forms

Zodd (—A)\o) or
Eowa(A) = o_dd (M) or (31)
odd (/\)
where Z*()\) are again upper and lower functions satisfying the relation
Z(A\Y =Z*(NZ7(N) (32)

Following a similar procedure we obtain Peyen (A) as

sin ¢,v/1 — A2 eIkT/2sindo
/\ + /\O gfzen (/\) even ( )geven ( )geven ( o)

J
Peven (/\) = ﬁ

euen ()\) Neven-l Neven—l m

(2o () 2555+ 8 L (AR O] (39

20



with E.pen (M), JAV;UM and b, being the counterparts of E ;4 (), ﬁodd and
amn, respectively. Taking into account the choices (31), we may substitute
(29) and (33) into (14) and subsequently perform a steepest descent path
evaluation to obtain for » — oo (all surface wave contributions are neglected
i this evaluation)

e—1ko

F(P,¢) ~ [Dodd(éa ¢0)+Deven(¢s ¢o)]_ (34)
Vikp/2%

where (p, ¢) are the usual cylindrical coordinates and D44 (¢, o)+ Deven (¢, ¢5)
is the far zone diffraction coefficient symmetric with respect to ¢ and ¢..

We have

eI/ sin ¢, sin ¢

27 cos @+ cos ¢,

Doy (0,0,) = —

ejkr/Z(sin¢o+lsin #|)

0dd (cos @) G4 (cos ¢, Q"’dd (cos ¢) QO‘M (cos ¢,)

Noda=1 Nogg—1-m

Zodd(cos@ cos ¢,) + Z Z Umn

-(cos @ +cos ¢,)™ (cos ¢ cos ¢, )" (35)

e~/ sin ¢, sin ¢
21T cos ¢ + cos ¢,

Deuen (¢a @o)

ejkr/?(sin $o+|sin¢}])

cven (COS ¢) geven (COS @o) geven (COS ¢) geven (COS ¢o)

~ fveven"l ﬁcucn—l—m
Zeven (cos @, cos o) + 3 bn

m=1 n=0

-(cos @ +cos ¢,)™ (cos ¢ cos ¢,)" (36)
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in which the functions Zodd‘wen (cos ¢, cos ¢,) are given by (see (31))

~ Z ,44 (— cos ¢ cos ¢,,) or
Zogq(cos g, cosd,) = < Zo,,(cosd)Z ,,(cosp,) or (37)
Z}4(cos @) Z}y4(cos ¢o)
~ Zeven (— cos ¢ cos ¢,) or
Zoven (COS P, cO80,) = even (cos ¢) Z;,,, (cos ¢,) or (38)

C’UETL (cos ¢) ZE’UCTL (COS ¢ )

Because the above three choices for Z,4 and Z.ven differ only by terms of
the form (cos ¢ + cos ¢,)™ (cos ¢ cos ¢,)", it is immaterial which of them we
choose, although one of the choices may likely lead to a more compact rep-
resentation. Nevertheless, regardless of the choice of Zodd and Ze,,en, one 1s
still faced with the determination of the unknown constants a., and by, in
(35) and (36), repectively. These are a manifestation of the non-uniqueness
of the finite-order GSTC sheet model employed herein, and their explicit
determination requires the introduction of additional constraints pertain-
ing to the physics of the problem. Before we consider their determination
for the general case, we first look at a specific example, that of diffraction
by a thin single layer junction.

4 Diffraction by Thin Single Layer Discon-
tinuous Slabs

The diffraction coefficient given by (35) and (36) is very general and can
model a wide variety of geometries. To check its validity, display its ver-
satility, and assess the relative importance of the unknown constants, we
consider the thin material-to-material junction of thickness 2w as shown
in Figure 4. The slab will be modelled by a sheet of thickness 2(w — w;)
and with a proper choice of the material parameters this geometry can re-
duce to junctions whose diffracted field is available, thus, permitting some
validation of our solution.

If the left hand side of the slab, in addition to being thin, is also asso-
ciated with low index of refraction, it may be modeled by a low contrast
GSTC sheet. Thus, an O(w!, w!) approximation with terms of O(w,w) ne-
glected is sufficient for the representation of the operators or polynomials
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U}, In particular, we have

Uy, (_ax2/k2) =1
iy (=0a/K7) = gk =)

Uy (—axz/kz) = Jk (M“ul - ws> + i— (3 - uu) dz*

Uy

uy, (—02*/k*) = 1 (39)

where €, and y; are the relative permittivity and permeability of the left
hand slab, respectively, and

w; = {/‘ls E, polarization 0

€1 H, polarization

Also, when w, = w, these are simply the transition conditions derived first
by Weinstein [5] and later by Senior and Volakis [6]. The corresponding
polynomials to be employed in (23) - (28) are given by

Z/llll (—cosgcosg,) =1
UL, (= cos pcosd,) = jhk(ujw — w,)

Uy, (— cos ¢ cos ¢,) = jk (welul — ws) + 7k (—L2 ~ ws> COS ¢ oS @,

U1 U1

Uy, (— cos g cos ¢,) = 1 (41)

Incorporating these into (35) and (36) and setting

Zodd (COS ¢3COS ¢o) = Zodd(—COS¢COS ¢o) (42)
Zeven (COS¢,COS ¢o) = Zeven (_COS¢COS ¢o) (43)
yields
—iT/4 g i . . ,
Doss(6,6,) = —So SRS piratsinsotisin)

27 cos¢ + cos @,

] Ul (= cosdcos d,) — jk (uuw — ws)ul21 (— cos ¢ cos ¢,)
M_ (cos ¢; o441 ) M_ (cos ¢o; 77441 ) G344 (cos ¢) G54+ (cos ¢,)

(44)
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Doven (6, hy) = —E2202 sindelsindl jkr/2(sindo+|siné)

2w cos¢+cos ¢o

[o1 42 cos ¢ cos do)iA. 2(— cos ¢ cos ¢o)-L(221 (= cos ¢ cos @)

' { a3 [[ ey M= (cosgivin ™™ )M (cos doivim ™" )| G54°" (cos #)05{" (cos o)

bio{cos p+cos do) } 45
0:{1—1,,, ]M_(Cosé"{evcn 1)“[_((:0300;7;:1“1,1) ;‘“’"(coséﬁg“"(cos¢o) ( )
where the split fun~*’on M_ (cos ¢; ) is given in the Appendix,
. (welﬂl )
ay, = Jjk — w,
Uy
a, = jk (—— —w )
175}
Jkw
ag = — (eyn—1) (46)
U
and
odd,1  _ _.]

k(uyw — w,)

- uy £ Ju? + 4k2w (e — 1) (w — uywy)
71,2 v = r)l\, (47)
25k (w — wsuy)

with 4497 e¥e" are associated with possible surface wave poles. To complete
the definition of (44) and (45), the functions associated with the right hand
side properties of the slab (i.e. those functions with the superscript 2) must
be specified and Tables 1 and 2 provide explicit expressions for the functions
UZ (— cos pcos §o), G G344 (cos ) g"dd (cos ¢,) and GE4™ (cos @) G54 (cos ¢,)
terms By edge condltlon considerations, all of the constants a,,, and bpy
have been set to zero except bjo appearing in the definition of Deyen, which
is non-zero unless the right hand side slab is a PEC/PMC under an E,/H,
excitation (see Table 2).

By invoking image theory the diffraction coefficient for the
grounded metal- dielectric join, shown in Figure 5 is given by

D, (cos ¢,cos ¢po) = 2D,yen(cos ¢, cos ¢,) (48)
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The GSTC or GIBC model for this structure cannot dsicriminate whether
the stub at the junction is a perfect electric conductor (PEC) or perfect
magnetic conductor (PMC). This information can only be carried by the
constant b;o and its determination must somehow involve the properties
of the junction across its thickness as discussed in a subsequent section.
However, since the diffraction coefficient for the junction in Figure 5 is
already available [15], b can be identified. Upon setting w, = 0, we find

no stub _ 1. [
bio = jhw,/4 (49)
ppec stub ikwy ) o (50)
10 J‘i_lw(m_l)[Al—( 51#11'que"’] 1‘1-(\/C]—MT|W;UGn'1)]2+%
Jkw %l
b?omc stub _ 1 (51)

J,‘:—T( €1 11 —1)[IV—( mv’vfum'l )AW-( €] itl,“rgwm'l )]?—;-

This comparison clearly demonstrates the importance of the constant by
and by referring to Figure 6 we observe that it plays a major role in the
computation of the diffracted field.

5 Modal Decomposition of the Symmetric
Slab Fields

A general approach for determining the solution constants is to enforce
tangential field continuity accross the junction. This, of course, demands
a knowledge of the fields internal to the discontinuous slab, which are not
readily available when a GSTC simulation is employed. The Weiner-Hopf
(or dual integral equations) solution in conjunction with the GSTC pro-
vides only the fields external to the slab, and this section deals with the
determination of the internal fields from the external ones.

A modal representation of the internal field is first proposed comprised
of discrete and continuous spectral components. This representation is
compatible with that given by Shevchenko [16] whose eigenfunctions are
chosen to satisfy field continuity across all layer interfaces including the
air-dielectric interface. Consequently, the representation is valid inside and
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outside the dielectric once the coefficients of the modal representation are
determined. This is accomplished by recasting the Weiner-Hopf or dual
integral equation solution given earlier (see (13), (14), (29) and (33)) in a
form compatible with the proposed modal representation, thus permitting
the identification of the modal or eigenfunction coeflicients. These will, of
course, be in terms of the unknown constants appearing in the Weiner-Hopf
solution and the enforcement of field continuity accross the junction leads
to a linear system of equations to be solved for the constants as described
in the next section.

For the symmetric slab in Figure 2, the total field may be decomposed
into its odd and even components. Specifically we write

Fl,odd (m,y) + Fl,euen (a:,y) <0
F(z,y)= (52)
F2,odd (l',y) + F2,even (.23, y) >0

where F?% (r,y) = —F°¥ (2, —y) and F*" (z,y) = F**" (z, —y). Follow-

ing [16], the odd and even fields interior and exterior to the slab may be
expanded into discrete and continuous eigenmodes as

Ngo

2 - 1,90
1,0dd _ 1,0dd,1,1,0dd 1,90 —jkzAp?
F (I’y) - Z ‘4m \II ((/\m ) ay)e
m=1
Nj""?dd 1,0dd
1,0dd F,1,0dd —JkxT Ay,
+ E B.® > (y)e m
m=1

+/0°° Chodd (g) glodd (Az’y) e~ g3 (53)

Ngo
Fl,eveﬂ (1- y) = Z Al,even‘pl,even ((/\l.go)Q y) e_jkz"\ir'lgo
’ m m )
m=1
Nl,even
aw
1,even g 1,even _jk‘r/\l,even

m=1

+/(;oo Cl,even (,6) ‘Ill,even ()\2’y) e—jkx/\dﬁ (54)

Ngo

2 . 90
F2,odd (I,y) — Z AifLOdd\I’Q'Odd ((/\?r;go) , y) e—]kx,\?,ﬂ

m=1
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2,0dd
New 2.0dd
2,0dd x 2,0dd —jkz A%
+ E B oM (y)e m

m=1

+ /(;00 C?.odd (}3) \P2,odd (/\2’ y) e—jkr,\dﬁ (55)

AVg o

F2.cven (.’l‘, y) — Z Ai;even ql2,even (()‘727;90)2 ’ y> ﬁ_jkr,\fs-go
m=1

2,even
Naw

+ Z B:‘ljﬁwn (i)‘i;even (y) e_jkl.)‘?r.‘euen
m=1

+/ C2,even (ﬂ) \P2,euen (/\2’ y) e_jkx’\dﬁ (56)
4

where Im{A2even} < 0 and A = /T — 32, with the branch of the square
root chosen so that Im{y/1 — 32} < 0. In (53)- (56), %" are referred
to as the cross section functions corresponding to the continuous modal
fields whereas ®27¢¢*" are the corresponding cross section functions for the
discrete modal fields associated with the surface waves. The cross section
function associated with the geometrical optics fields is also Weddeven eyval-
uated at A = A%, where A9°s a parameter to be determined later. As can
be observed from (53) - (56), the cross section functions specify the field
behavior in the plane normal to the slab, and hence all information per-
taining to the fields interior to the slab are embedded into these functions.
They will be chosen to satisfy the orthogonality relations (where u(y) is
u(y) or e(y) for E. or H. polarization, respectively)

/oo T(A%,y) ¥ (X2y)

~ e dy = 0 for \# X (57)
[ IO, (58)
—o u(y)

and thus each discrete eigenmode &, (y) e™7*** and each continuous eigen-
mode ¥ (A%, y) e "™ must satisfy the wave equation. Additional details
pertaining to the cross section functions are given in [16].
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Ezxterior Cross Section Functions

To compute the cross section functions in the exterior slab region |y| >
7/2, we recall that in accordance with the slab simulation based on the
generalized sheet transition conditions (GSTCs), the external fields satisfy
the conditions (10) and (11). Because of the orthogonality relations (57)
and (58), each of the cross section functions ¥ (A%, y) and ®,, (y) must then
satisfy their respective odd or even GSTC. In view of this we set

vt (i) = M (), v 2 VT

gy (V) cos [k (ly] = 7/2) VT =]}
= % {L(f’l (/\2> 612(13 1’ ’yl - T/Q’ )‘2)
+Z/{{)2 ()‘2) @22(1a1,‘y| -T/27/\2)} (59)

in [k (|y| — 7/2)V1 =2
Jpreven (/\2’?/) — {uzp] (/\2)],5111[ (lyl 1_//\)2 ]

+Uf, (A2) cos [k (|y) — 7/2) VI = X2] }
= {t (W) dua(1, 1,1y — 7/2,4%)
+Up, (A G, 1, [yl — 7/2,2%)} (60)

where ¢;; represents the infinite order form of the ¢;; layer operators given
in [10]. Once each of the modes comprising (53) through (56) is substituted
into (10) or (11), the differentiation implied by —dxz?/k? reduces to a mul-
tiplication by A? and the above % and ¥P¥" are then readily shown
to satisfy the associated GSTC. It can also be shown that these satisfy the
orthogonality conditions (57) and (58).

A customary representation for the surface wave cross section functions

. ,odd \2
vty = WV CE s o)

. ,cven2
apeen(y) = VLR s oy (62)

28

18



where AP:v¢m9%d must now be chosen so that they satisfy their associated
GSTC. By substituting (61) and (62) into (10) and (11), we find that

Moddeven myst satisfy the polynomial equations

V= Oa) g (pee)) v (o)) =0 (o)
/1 . (A%even)lu& ([/\ﬁ‘;even]z) + u;l ([/\fr,leven]2) — (64)

and can be also identified as the poles of the slab plane wave reflection
coefficient. We further note that

prodd ([/\fﬁodd] 2 ’ y)
u, ( [Agiee) 2)

\I,p,even ([/\peten]2 l})

m

T (y) = e Wl > T/2 (66)
ug, ([Xe")?)
implying that for a multilayer slab the cross section functions associated

with the discrete and continuous eigenmodes are of the same generic form

given by (59) and (60).

ortt(y) =

m

vyl > /2 (63)

Interior Cross Section Functions

We consider now the determination of the cross section functions for the
region interior to the slab (i.e. in the region |y| < 7/2). For simplicity let
us first assume a single layer slab of thickness 7 = 7, whose upper face is
located at y = —7;/2. In accordance with the preceeding, the cross section
functions associated with the external fields are given by

prodd (,\Q,y) = M {qll (u’f, R’f,rlp,/\2) G12(1, 1, [y} — /2, A

+(I12 (ul Kllev/\ )d??(lslalyl_‘rl/21/\2)}; Iyl > T1/2 (67)

e (3 ) = g (o278 GialL, 1yl — 12, 00)
+qr (uh, K3, TP A Ga(1, 1, yl = /2,00 )5yl > /2 (68)
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obtained by setting U, (A?) = ¢i; (uf, £, 7], A?) in (59) and (60). These
are orthogonal functions and each must, therefore, satisfy the continuity

conditions
PPt (A2 ) = et (02 ) (69)
ul—laywodd (3 17) = oyurett (A% ) (70)
peven ()\2,7'1_) — ppeven (’\277'1+) (71)

iay\pz),even (/\2’ Tl_) — ay\pp,even (/\2’ 7_1+)

tq

with similar conditions on ®2%*v¢"(y). It is now straightforward to deduce
that possible cross section functions satisfying (69) - (72) are of the form

i
\I/p'Odd (/\27y) = I'yAQIZ(‘u;I)’K?’lyIaA?) (73)

v (32 y) = ga(uf,kl, [yl A?) (74)

for |y| < 7/2. Also, in view of (69) - (72), the cross section functions for
the surface wave modes remain as given in (65) - (66), provided (73) and
(74) are used in place of Poddever,

For the general case of a multilayer slab, it is necessary that each of
the internal cross sections functions satisfy the continuity conditions at all
layer interfaces comprising the slab. In this case we find that

( ufl ()‘2)412(1’ 13 |y| - T/27 )‘2)
+u1p2 (A2)§22(1, 1, ly| - 7/2’/\2)§
) o v/
et (A y) = =PI (A) qua(ud, Kyl — wio1, AP) (75)
Yl PO g syl — yir, A2,
v > |yl > wa
\ Q12(u11’,'€f1 |y!v)‘2); !yl <
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z/(21(/\2)(]12 L1yl —71/2, A?%)
+Z/{22()\2)q22(1 Lyl —r/2, A%);
ly| > 7/2
vreen (W2 y) = PP (OA2) qualul 6, [yl — gimi, A) (76)
+Pég)(’\2)(h2(uf’ Kfa ly| — Yi-1, /\2);
v >yl >y
iyl <

P P
L ga2(uy, Ky, {2

where

() )
[R) mi o)
gui(u?, kP TP —'1 ) qlg(up hfn,rr’,’l,—%—z—)

Qa1(uby KD, TR, —55) qualub,, P TR, 5

When these are used in (53) - (56) in conjunction with (65) and (66) we
have a complete field representation for all z.

6 Recasting of the Dual Integral Equation
Solution for a Material Junction

The expressions (53) - (56) can be used to represent the fields interior and
exterior to the slab. It remains to find the coefficients of these expansions
and to do this we must first rewrite F (x,y) in a form compatible with (53)
- (56). That is, we need to identify from (13) and (14) the discrete and
continuous spectral components. The discrete portion of the spectrum is,
of course, comprised of the geometrical optics and the surface wave fields.
These can be identified by detouring the integration path in (14) as shown
m Figure 7. In particular, for ¢ < 0 the integration path may be deformed
to one over the branch cut in the upper half of the A plane, capturing
any surface wave poles attributed to the zeros of G¢%(X) and G ()).
Similarly, for * > 0, the integration path may be deformed to one over
the branch cut in the lower half of the A plane causing the capture of the
geometrical optics pole at A = — A, in addition to any surface wave poles
attributed to the zeros of G234 (X) and G5¥*™ (N).
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Through the above deformation of the integration paths in (14) we
obtain

Flotd (2,y) + FLo% (2,y) + Fi5¢ (z,y) 2 <0

78
F2oi (z,y) 4 F204 (z,y) 4 F2o4 (2 ) 250 )

FOdd(l‘,y) — {
Fglo,even (x’y)+Fsltbeven (x’y’)_*_f;ili,;t}en (:r,y) < 0 _

Fa,y) = { even even cven | (79)
Fg2¢; (I’y)+F321b ($7y)+Fd21‘jf (Tvy) x>0

where the components F,, Fy,,, Fyss denote the geometrical optics, surface
wave, and branch cut (or diffraction) contributions to the total fields.
After some manipulation we find

El (2,y)

_ A{’Odd(/\o) \Ill,odd (/\z’y) ejkrcosd», (80)

F;O,odd (.’E, y) — A.%Odd (/\o) lII2'°dd (/\g’ y) ejk:rcos do (81)
Fgl(;even (.17, y) — “4i,even (Ao) \I,l,even (/\3, y) ejkz: cos ¢, (82)
Fg2$euen (’l‘, y) — A-il.’,euen (/\o) lIJ2,even ()\3’ y) ejkx cos ¢o (83)

where the A expansion coefficients are identified as
: Jjkt/2sin¢,
A Lodd A, sin ¢,e 4 84
: jkT/2singg
‘42,0dd Ao sin ¢Oe 85
1 ( ) ggdd ()\g) ( )
: 1k7/2sin¢o
Al,even Ao — s ¢Oe 86
1 ( ) gleven (/\g) ( )
sin ¢oejk~r/25in¢o
AT (A ‘ 87
1 ( ) gguen (Ag) ( )

For the B coefficients, we have

N:'Lodd
Fpf(ay) = 30 B(A) [zm (—2eA)
I=1
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+ Z Z Ao, (/\}'Odd‘f'/\o)m (/\ll,odd)\o)n

Nogd—1 Npgg—1-m }

plodd ([’\1 ,odd} ,y) gmikeA} 55
Vl even
Fl even( y) — Z Bl .even (/\O) I:Zodd (_/\o/\ll,even)
Neven_l chen—l—m m n
S e ) ]
. \I;l,even ([/\ll,euesn,}2 ’ y) e_ka,\‘lveven (89)
with
Blo¥(\) = —— sin ¢,
L ( ) /\ll,odd + Ao
ejkr/?sinqbo %0
. agedd( ) odd (/\ )godd (/\1 add) godd( ) ( )
A ’\='\;'Ddd o]
even — sin éo
Bll’ (Xo) = TTewen 3
{ + /\o
6jkT/2sin¢o ’
. ___ag;gen(,\) even pY even )\1 even even {217\
dA \_\l,euen ( )g ( ) g ( O)
A=)

The expressions for F2°%(z,y) and F%***"(z,y) parallel those in (86) and

(87).
To obtain the C coefficient we express F 11})?4 as

—3,/1— A2
Iyl/ 27 VT= 7 (VI= 57+ Ao)

j"’/Z(M+5) —ikly|B g =sker/1-52
odd (\/—52_*_ 6|;3l) odd(/\ )godd (\/1_—ﬂ2) godd (Ao)

1,0dd
thff (‘I'y =
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Nogd—1 Nogg—1-m

’[Zodd< \/1—52) +Z Z
G (/\o +/1- /32)” (,\o\h _ /92>n]dﬂ (92)

where the branch of the square root is chosen so that I: /1 — 32) > 0 and
0 is a vanishingly small positive number. By splitting the integral into its
positive and negative portions, and employing some identities (92) becomes

Figiay) = [ C%(8) Zoua (T-520.)
. \Ill'Odd (1 - 6233/) e—jkz‘\/l—ﬁ"’dﬁ (93)
with the expansion coefficient C'!°% (3) given by

ClOdd(j) .7 ﬂ2vl_/\2

W\/1—32(\/1—/32+)\)

/f*g (V=) .
godd(m)gow ) (W (1= AP = Bl (L= o]

2,even

Similar expressions for F;,-’}’?d(:z, ), F;l-'?}e"(m, y) and F;{¢™" can be obtained
in a parallel manner leading to the identification of the remaining C coef-
ficient.

7 Determination of the Constants

To determine the constants a,,, and b,,,, we may now enforce the tangential
field continuity conditions

F(m:O_sy):F($:O+,y); |y‘<7./2 (95)
ull(y)axF(x’y)ﬂO‘ - U21(y)axF($,y)x=o+; lyl<7/2  (96)
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with

_ Jmaly) E:-pol _
Uy,2 (y) - {61_2 (y) Hz—pol (9‘)

and the subscripts 1 and 2 denoting quantities attributed to the left and
right side of the slab. Substituting (79) - (79) into (95) and (96), we obtain

Fqlo,odd (l — 0_,y) + Fslu,)odd (1_ =0, y) + Fdli,})id (.T =0, y)
= F (e = 0%,y) + F2* (2 = 0%,y) + F257' (z = 0*.y)  (98)

1 _ )
iy O [F ) + F y) + Bl (2]
1

= o2 Bt ey + Fig @) + Figt (z.y)],

=0-

(99)

=0+

Fglo,euen (1, =0, y) + Fslliven (:E =0, y) + F;i,;t}en (.’L‘ — 0_’y)
- Fgﬁeuen (l‘ — O+, y) + FSQU,}even (.I,‘ — 0+’ y) + Fi_,;}en (.l‘ - 0+’ y) (100)
1
w1 (y)

1
— a.'E F2O,even r, + Fs?u.}euen T, + F2i,euen z,
us (y) [ g (z,y) (z,y) dif f ( y)]x

Ba [F™ (2, y) + Fi™ (2.y) + Fafy™ (a,v)]

r=0—

(101)

=0+

to be solved for all a,,, and b,,,. In particular, for an odd GSTC of O(Nd)y
to the left and of O(N3??) to the right of the discontinuity, the number of
Gmn to be determined is equal to

N,u4 (Nodd - 1)
9

{ ( ‘V;dd+Ngdd)(‘N;dd'*"’vgdd-z)

8
(Nldd+N3dd)2“1 .

N, =

;. NL,+ N2, is even

3 y AToldd + lVOQdd iS Odd

(102)

O

To determine all a constants, (99) and/or (100) must then be enforced or

sampled at a minimum of N, points accross |y| < 7/2 and 0 < ¢, < 7.
Similarly for an even GSTC of O(N{“™") to the left and of O(N{*") to the

35



right of the discontinuity,

ﬁeven (Neven - 1)
2

4

Ny, =

(Ngvcn+N3ven)(NC]UE"+N3"¢"_2) 1 2 4
. { 28 ; Neuen + Neven 1S even (103)
(Nelucn+‘,ve20en) -1 1 2 M
8 : Neven + Neven 1S Odd

and thus, the b constants can be determined by enforcing (101) and/or
(101) at a mivitu.. u of N, points.

Substituting for the fields in (99) and (100) as given in the previous
section, we obtain the equations

Na

"’Ft‘jdd(/\ovy) = Zang‘dd(m(p)sn(p)s/\my) (104)
p=1
Na

Vit (Qovy) = 30,250 (m(p) ,n(p), X y) (105)
p=1

where a, = Am(pyn(p) With

(n+m-—-1)(m+n)

= > +m (106)
1 1+8(p—1)—1
m(p) = p—ifnt{ 5 }
.Int{vl+8(1;_1)+1} (107)
14+8(p—1 1
n(p) = Int{ i (I; )+ }—m(p) (108)

which are in accordance with the ordering of the a,, constants as the order
of the GSTC is increased (see Figure 8). The functions V24, V%, Zg*? and
Z334. are readily determined from the previous analysis and are not quoted
here.

Equations similar to (104) - (105) can be obtained for the b constants
in a parallel manner.
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8 Validation of the Solution

The validity of the derived angular spectra and diffraction coefficients was
already performed to a limited degree in Section 4 of the paper. What
remains, therefore, is a validation of the procedure for computing the con-
stants @, and by, which amounts to solving a small matrix. The valida-
tion was done by comparison with processed data from a numerical model
which consisted of a finite length slab having the prescribed discontinuity
or junction at its center. First, the transient response of this finite slab
was generated from bandlimited frequency domain data. The contribution
from the material junction was then obtained by time gating the transient
response. Numerically derived data from this procedure were found in good
agreement with the presented analytical solution. An example is shown in
Figure 9 corresponding to a thick (0.2 freespace wavelengths) material half
plane. The numerical and analytical data are clearly in good agreement,
and it is again demonstrated that the constants play a major role in the
solution.

9 Other Applications of the GIBC/GSTC

It was shown above that the GIBC can effectively model thick planar layers
of material. However, corresponding GIBC can also be derived for curved
coated surfaces (see Figure 10), and the improved accuracy of these is
particularly evident when surface wave effects are dominant. For surfaces
having relatively large radii of curvature these can be easily derived from
those of the planar surface with z and z replaced by the local tangential
variables and y by the normal one. With a second order GIBC derived in
this manner, the Mie series and GTD solutions have been found [20], [21]
and compared with the exact modal series solution for a coated cylinder.
As illustrated in Figure 11, the field given by the Mie series based on the
GIBC is in excellent agreement with the exact result even at points close to
the surface in the shadow region where a finite order boundary condition is
mnadequate. In contrast, data based on the standard impedance boundary
condition (SIBC) are substantially inaccurate.

Higher order boundary conditions have advantages in numerical treat-

37



ments as well. When used to simulate a coating, a GIBC eliminates the
need to sample inside the dielectric, and this is important when storage is
limited. In addition, it may be possible to use a GIBC to transfer a bound-
ary condition to a plane, thereby producing a boundary integral equation of
convolution type. In conjunction with an FFT, the equation can be solved
iteratively to reduce the storage requirement to O(n) where n is the num-
ber of unknowns. As an example, for the three diniensional problem of a
cavity in a coated ground plane, a GIBC provides a simple modal as well as
a reduction in memory. If the coati~: s lossy or tapered in thickness, the
non-uniqueness due to the terminations is avoided, and the same is true for
cavities whose depth tapers to zero. Nevertheless, caution must be exer-
cised when solving the integral equation numerically. The GIBC results in
higher order derivatives applied to the Green'’s function, and even if some
can be transferred to the current, the increased singularity of the Green’s
function makes discretization more difficult. In spite of this, integral equa-
tion methods using GIBCs of up to the third oder have been successfully
implemented [22].
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Appendix: Multiplicative Split Functions

In this appendix we consider the splitting of
G (W) =ua (M) + V1= NUp (2?) (109)

as a product of two functions, one of which is free of poles, zeros and
branch cuts in the upper half of the A plane and the other having the same
properties in the lower half of the A plane. That is, we seek to write G (A?)
in the form

G (M) =6.(NG- () (110)

where the superscript 4+ and - indicate an upper or lower function, respec-
tively. Noting that

Uy (3) = %4 [1- 2 (111)
n=0

L{B(X") - %Bn [1—A2]" (112)
n=0

with N3 = Np or Ny = N + 1, we may rewrite G (A?) as
Ns "
G(N) =3 8. [vi— (113)
n=0

where N, = Maz(2N4,2Ng + 1) and S, = Anj2 if nis even and S, =
B(n-1)/2 if n is odd. However, since we seek a multiplicative splitting of
(113), a more convenient form to represent G (A?) is

o) = (1 Y5

n=1

(114)

in which v, denote the zeros of the polynomial Z,A;SO S (—/\)l. We immedi-
ately now identify that each of the product terms in (114) can be factored

V1= A2,
4 VI A e My (X y) Mo (A7) (115)
y

as
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where

v1—=2A
Ky (AM1/y) = 'M“‘;l—(/\—ﬂ

is the split function characteristic to the impedance half plane having a

constant surface impedance 1/y [17]. With the branch choosen so that
Im(V/1 =A%) < 0, My (X\;7) is explicitly given by

(116)

Mp(Ny)  Im(y)<0

My (Ny) = M_(=Xv) = in(r-/1-+? (117)
’ ﬂﬁ—(—)\%l I:Il("y) > 0,
+(N-

T (7/2) [1 + V2 cos (EB—:;—M)] [1 + V2 cos (3’r 22_0‘_9)]

M, (cosa;1/n) = V3T (Br/2 —a = 6) Uy (/2 —a + O]

(118)
In this,
Im(n) 2 0
A = cosa
Im( 1—1/772> < 0
6 = sin~'(n) with 0 < Re(8), (119)

and ¥, (a) is the Maliuzhinets function [18] whose evaluation in algebraic
form has been given in {19].

The determination of G+ () is now rather trivial. By substituting (115)
into (114) we easily obtain

Ng
Gy () = G- (=X) = /S0 J] Me (A7) (120)
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Figure 1. (a) Distributed sheet. (b) Distributed sheet discontinuity.
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Illustration of the C contour in the complex A-plane.

Figure 3.
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Figure 4. Thin discontinuous slab and its associated sheet representation.

Figure 5. Recessed slab (PEC stub) on a ground plane.
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Figure 10. Illustration of a three-layer coated cylinder.
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coated with a layer 0.07A thick having e=4 and p=1; Comparison of fields at a distance
0.054 away from the coatings surface.
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